An Adaptive Fractional-Order Variation Method for Multiplicative Noise Removal
نویسندگان
چکیده
This paper aims to develop a convex fractional-order variation model for image multiplicative noise removal, where the regularization parameter can be adjusted adaptively according to balancing principle at each iterations to control the trade-off between the fitness and smoothness of the denoised images. In the light of the saddle-point theory, a primal-dual algorithm has been applied to solve the proposed model, and the convergence of the algorithm is guaranteed. Simulations with comparisons are carried out to demonstrate the details preserving ability and the fast property of our proposed denoising method.
منابع مشابه
A fast adaptive reweighted residual-feedback iterative algorithm for fractional-order total variation regularized multiplicative noise removal of partly-textured images
In this paper, we introduce a simple reweighted residual-feedback iterative (RRFI) algorithmwhich provides a general framework to solve the fractional-order total variation regularized models with different fidelity terms. We provide a sufficient condition for the convergence of this algorithm. As an application, we use this algorithm to solve the TV and fractional-order TV regularized models w...
متن کاملInteger-order Versus Fractional-order Adaptive Fuzzy Control of Electrically Driven Robots with Elastic Joints
Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots has been addressed in this paper. Two important practical situations have been considered: the fact that robot actuators have limited voltage, and the fact that current signals are contaminated with noise. Through of a novel voltage-based fractional order control for an integer-order dynamical ...
متن کاملAn Adaptive Strategy for the Restoration of Textured Images using Fractional Order Regularization
Total variation regularization has good performance in noise removal and edge preservation but lacks in texture restoration. Here we present a texturepreserving strategy to restore images contaminated by blur and noise. According to a texture detection strategy, we apply spatially adaptive fractional order diffusion. A fast algorithm based on the half-quadratic technique is used to minimize the...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملAdaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation
This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 32 شماره
صفحات -
تاریخ انتشار 2016